4. [12 points] Consider the system of differential equations given by $\mathbf{x}^{\prime}=\mathbf{A x}$, where \mathbf{A} is a real-valued 2×2 matrix and $\mathbf{x}=\binom{x_{1}}{x_{2}}$.
a. [6 points] Suppose that the eigenvalues and eigenvectors of \mathbf{A} are $\lambda=-1 \pm i$, with $\mathbf{v}=\binom{2 \pm i}{1}$. If \mathbf{x} solves $\mathbf{x}(0)=\binom{1}{0}$, sketch the trajectory for \mathbf{x} in the phase plane.
Solution: The general solution is $\mathbf{x}=c_{1}\binom{2 \cos (t)-\sin (t)}{\cos (t)} e^{-t}+c_{2}\binom{\cos (t)+2 \sin (t)}{\sin (t)} e^{-t}$, so to satisfy the initial condition we may take $c_{1}=0$ and $c_{2}=1$. Then, as t increases we see that y component of the trajectory increases, and it will be an inward spiral, giving the trajectory shown below.

(If we want to outdo ourselves, we could also note that $x^{\prime}(0)=\left(\begin{array}{ll}1 & 1\end{array}\right)^{T}$ to give the initial direction of the trajectory, thereby getting the orientation of the spiral shown above.)
b. [6 points] Suppose that eigenvalues and eigenvectors of \mathbf{A} are $\lambda_{1}=1$ and $\lambda_{2}=2$, with $\mathbf{v}_{1}=\binom{1}{2}$ and $\mathbf{v}_{2}=\binom{-2}{1}$. If $\mathbf{x}(0)=\binom{0}{-1}$, as $t \rightarrow \infty$, which of the following is most correct, and why? (i) $x_{2} \approx 2 x_{1}$; (ii) $x_{2} \approx-\frac{1}{2} x_{1}$; (iii) $x_{2} \approx-\frac{1}{2} x_{1}-1$; (iv) $x_{2} \approx-\frac{1}{2} x_{1}-k$, with $k>1$.
Solution: The phase portrait for the system will look something like the following.

All trajectories end up parallel to the second eigenvector, which has slope $m=-\frac{1}{2}$. Looking at the dashed trajectory, we see that a trajectory through $(0,-1)$, will be shifted significantly below either of $x_{2}=-\frac{1}{2} x_{1}$ or $x_{2}=-\frac{1}{2} x_{1}-1$, so (iv) must be correct.

