5. [12 points] In lab 6 we considered the Fitzhugh-Nagumo model for the behavior of a neuron,

$$
v^{\prime}=v-\frac{1}{3} v^{3}-w+I_{e x t}, \quad \tau w^{\prime}=v+a-b w
$$

In this problem we analyze this with the parameters $\tau=1, a=\frac{1}{3}$, and $b=1$.
a. [3 points] Find the v - and w-nullclines, and show that there is a single critical point $\left(v_{c}, w_{c}\right)$ in this case. Find the critical point in terms of the externally applied voltage $I_{\text {ext }}$.
Solution: The w-nullcline occurs when $w^{\prime}=0$, and thus is $w=v+\frac{1}{3}$, The v-nullcline is when $v^{\prime}=0$, so when $0=v-\frac{1}{3} v^{3}-w+I_{e x t}$. Plugging in for w, we have $0=-\frac{1}{3} v^{3}-\frac{1}{3}+I_{\text {ext }}$, so that the critical point is when $v=v_{c}=\sqrt[3]{3 I_{e x t}-1}$ and $w=w_{c}=\frac{1}{3}+v_{c}$.
b. [3 points] Linearize the system at the critical point (write your linearization in terms of v_{c} and w_{c}-do not plug in the values you found for v_{c} and w_{c}). How is the solution to your linearized system related to the solution of the original nonlinear system?
Solution: The Jacobian of the system is $\mathbf{J}=\left(\begin{array}{cc}1-v^{2} & -1 \\ 1 & -1\end{array}\right)$, so $\mathbf{J}\left(v_{c}, w_{c}\right)=\left(\begin{array}{cc}1-v_{c}^{2} & -1 \\ 1 & -1\end{array}\right)$ and with $(v, w)=\left(v_{c}, w_{c}\right)+(x, y)$ the linearization is

$$
\mathbf{x}^{\prime}=\binom{x}{y}^{\prime}=\left(\begin{array}{cc}
1-v_{c}^{2} & -1 \\
1 & -1
\end{array}\right)\binom{x}{y}
$$

The solution (x, y) to the linear system tells us the behavior of the nonlinear system when trajectories are sufficiently near the critical point $\left(v_{c}, w_{c}\right)$. (Note that because the nonlinearity is strictly polynomial, we know that the system is almost linear and the linearization therefore makes sense.)
c. [6 points] Show that the critical point is in this case is always stable. Determine any values of v_{c} or w_{c} at which the behavior at the critical point changes. Explain how this result is different from that which you saw in lab.
Solution: The eigenvalues of $\mathbf{J}\left(v_{c}, w_{c}\right)$ are given by $\operatorname{det}\left(\mathbf{J}\left(v_{c}, w_{c}\right)-\lambda \mathbf{I}\right)=0$, or $(1-$ $\left.v_{c}^{2}-\lambda\right)(-1-\lambda)+1=\lambda^{2}+v_{c}^{2} \lambda+v_{c}^{2}=0$. Thus, using the quadratic formula, $\lambda=$ $-\frac{1}{2} v_{c}^{2} \pm \frac{1}{2} \sqrt{v_{c}^{4}-4 v_{c}^{2}}=-\frac{1}{2} v_{c}^{2} \pm \frac{1}{2} v_{c}^{2} \sqrt{1-4 v_{c}^{-2}}$. Because of the square, the leading term is always negative. Then note that $4 v_{c}^{-2}>0$, so the square root is either real and less than one or complex. Thus the eigenvalues are either both real and negative (if $\left|v_{c}\right|>2$) or complex with negative real part (if $\left|v_{c}\right|<2$); at $\left|v_{c}\right|=2$ the behavior changes from a stable node to a stable spiral. This is different from what we saw in lab, because in that case there was a value of v_{c} (and hence $I_{\text {ext }}$) at which the critical point went from stable to unstable as well.

Note that the above is predicated on the assumption that $v_{c} \neq 0$. If $v_{c}=0$, we have the degenerate case $\lambda=0$, twice. This indicates that the linear system is stable (but not asymptotically stable), and in this case we aren't able to speak to the stability of the nonlinear system.

