6. [12 points] Consider the nonlinear system

$$
x^{\prime}=3 x-y-x^{2}, \quad y^{\prime}=-\alpha+x-y
$$

where α is a real-valued parameter.
a. [4 points] Find all critical points for the system, and show that for $\alpha>-1$ there are two critical points, if $\alpha=-1$ there is one, and if $\alpha<-1$ there are none.

Solution: From the second equation, at critical points we require $y=x-\alpha$. Plugging into the first, we have $0=3 x-(x-\alpha)-x^{2}$, so $x^{2}-2 x-\alpha=(x-1)^{2}-1-\alpha=0$, and $x=1 \pm \sqrt{1+\alpha}$. If $\alpha>-1$ there are two critical points, $x=x_{1,2}=1 \pm \sqrt{1+\alpha}$ (with $y=x_{1,2}-\alpha$); if $\alpha=-1$, there is one, $x_{c}=1$ (with $y=0$); and if $\alpha<-1$ there are no real solutions.
b. [8 points] Let $\alpha=0$: then the system has two critical points, (0,0) and (2, 2). Sketch a phase portrait for the nonlinear system by linearizing at critical points and determining the resulting behavior in the phase plane.

Solution: Note that the Jacobian for the system is $\mathbf{J}=\left(\begin{array}{cc}3-2 x & -1 \\ 1 & -1\end{array}\right)$. If $\alpha=0$, the critical points are $(0,0)$ and $(2,2)$. At $(0,0)$ and $(2,0)$, the Jacobians are, respectively, $\mathbf{J}(0,0)=\left(\begin{array}{ll}3 & -1 \\ 1 & -1\end{array}\right)$, and $\mathbf{J}(2,2)=\left(\begin{array}{cc}-1 & -1 \\ 1 & -1\end{array}\right)$. The eigenvalues of the first are given by $(3-\lambda)(-1-\lambda)+1=\lambda^{2}-2 \lambda-2=(\lambda-1)-3=0$, so $\lambda=1 \pm \sqrt{3}$. Using the second row of the system, the resulting eigenvectors satisfy $v_{1}+(-2 \mp \sqrt{3}) v_{2}=0$, so that we may take $\mathbf{v}=\binom{2 \pm \sqrt{3}}{1} \approx\binom{2 \pm 1.75}{1}$. Thus at $(0,0)$ we have a saddle point with outgoing trajectories along a line with slope approximately $\frac{1}{4}$, and incoming along a line with slope approximately 4.

Similarly, at $(2,2)$ eigenvalues are given by $(\lambda+1)^{2}+1=0$, so that $\lambda=-1 \pm i$. At $(1,0)$ we get a slope $(x, y)^{\prime}=(-1,1)$, so this is an inward counter-clockwise spiral. The resulting phase portrait is shown below, with the trajectories from the linear system as solid curves and some representative nonlinear trajectories with dashed curves.

