- 6. [12 points] For each of the following, circle True or False to indicate whether the statement is true or not, and provide a one-sentence explanation. *Note that without an explanation no credit will be awarded.*
 - **a.** [3 points] Given any two solutions y_1 and y_2 to an equation y'' + p(x)y' + q(x)y = 0(where p(x) and q(x) are continuous), any other solution to the equation may be written as $y = c_1y_1 + c_2y_2$ for some constants c_1 and c_2 .

True False

Solution: This is false; if the solutions y_1 and y_2 are not linearly independent their linear combination does not give the general solution to the differential equation.

b. [3 points]
$$\mathfrak{L}^{-1}\left\{\frac{3s-6}{s^2+4s+20}\right\} = 3e^{-2t}\cos(4t) - \frac{3}{2}e^{-2t}\sin(4t).$$

True False

False

True

Solution: Note that $\frac{3s-6}{s^2+4s+20} = \frac{3(s+2)-12}{(s+2)^2+16}$, so that the inverse transform should be $3e^{-2t}\cos(4t) - 3e^{-2t}\sin(4t)$.

c. [3 points] Any 2nd or higher order system of ordinary differential equations $y^{(n)} = f(t, y, y', \dots, y^{(n-1)})$ $(n \ge 2)$ may be written as a system of first-order ordinary differential equations.

Solution: Let $x_1 = y, x_2 = y', \dots, x_n = y^{(n-1)}$, to get the system $x'_1 = x_2, x'_2 = x_3, \dots, x'_n = f(t, x_1, x_2, \dots, x_n)$.

d. [3 points] Suppose we approximate the solution to y' = f(x, y) on the domain $0 \le x \le 10$ using a numerical method. With h = .1 we get $y(10) \approx 1.501$; with h = .01, $y(10) \approx 1.487$; and with h = 0.001 or h = 0.0001, $y(10) \approx 1.486$. Thus the exact value of y(10) is to three decimal places 1.486, the errors when h = 0.1 and h = 0.01 are 0.015 and 0.001 respectively, and it is most likely that the numerical method used was the improved Euler method.

True False

Solution: All of the statements are reasonable except for the assertion that improved Euler was used. We would expect that the error would drop by a factor of $10^2 = 100$ (that is, that the error for h = 0.01 would be on the order of 0.00015, not 0.001).