8. [12 points] Consider the system

$$
\begin{aligned}
x^{\prime} & =a x+2 x y \\
y^{\prime} & =3 y-y^{2}+b x y
\end{aligned}
$$

where a and b are constants. The direction field and phase portrait for the system are shown in the figure to the right. (Dots indicate initial conditions for the trajectories shown.)
a. [6 points] What are a and b ? Be sure to
 explain your answer.
Solution: From the phase portrait, it appears that there are three critical points, at $(0,0),(0,3)$ and $(2,1)$. The given system will have critical points when

$$
\begin{aligned}
& 0=x(a+2 y) \quad \text { and } \\
& 0=y(3-y+b x) .
\end{aligned}
$$

Thus, from the first equation we have $x=0$ or $y=-a / 2$. If $x=0$ the second equation requires that $y=0$ or $y=3$, which give the first two critical points. Thus $a=-2$ so that $y=1$ for the third critical point. If $y=1$ we have $2+b x=0$, and we know that $x=2$. Thus $b=-1$.
b. [6 points] Suppose that x and y are populations of interacting species. What type of interaction is being modeled here? Explain what the phase portrait shown tells you about the behavior and expected long-term values of the populations and sketch a representative solution (x and y) against t.

Solution: With $a=-2$ and $b=-1$, we have the system

$$
\begin{aligned}
x^{\prime} & =-2 x+2 x y \\
y^{\prime} & =3 y-y^{2}-x y .
\end{aligned}
$$

Thus, population x is helped by the interaction while population y is hindered; we might guess that this is a predator/prey relationship with x as the predator and y as the prey. From the phase portrait, we see that if we start with $y=0$ (no prey), $x \rightarrow 0$; and if $x=0$ (no predators), $y \rightarrow 3$ (the environmental limiting value). If $x>0$ and $y>0$, we expect to see the populations of x and y oscillating around $x=2, y=1$ and as $t \rightarrow \infty$ that we will see $x \rightarrow 2$ and $y \rightarrow 1$. Thus our sketch of solutions is the following:

