6. [10 points] If we make a small typographical error when writing out the Lorenz system that we studied in lab 5, we obtain the system

$$
\begin{aligned}
x^{\prime} & =\sigma(-x+y) \\
y^{\prime} & =r y-x-x z \\
z^{\prime} & =-b z+x y
\end{aligned}
$$

a. [5 points] As with the Lorenz system, one critical point of this system is ($0,0,0$). Find a linear system that approximates the system near $(0,0,0)$.
b. [5 points] If $b=5, \sigma=1$, and $r=1 / 4$, the eigenvalues and eigenvectors of the coefficient matrix of the linearized system you found in (a) are approximately $\lambda_{1}=-5$ and $\lambda_{2,3}=$ $-\frac{3}{8} \pm \frac{7}{9} i$, with $\mathbf{v}_{1}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$, and $\mathbf{v}_{2,3}=\left(\begin{array}{c}\frac{5}{8} \pm \frac{6}{7} i \\ 1 \\ 0\end{array}\right)$. Describe phase space trajectories in this case. If we start with an initial condition $(x, y, z)=(0.5,0.5,0)$, sketch the trajectory in the phase space.

