8. [15 points] For each of the following, identify the statement as true or false by circling "True" or "False" as appropriate, and provide a short (one or two sentence) explanation indicating why that answer is correct.
a. [3 points] Two linearly independent solutions of $x^{\prime \prime}+6 x^{\prime}+9 x=0$ are $x_{1}=e^{-3 t}$ and $x_{2}=$ $t e^{-3 t}$. Thus two linearly independent solutions of $\mathbf{x}^{\prime}=\left(\begin{array}{cc}0 & 1 \\ -9 & -6\end{array}\right) \mathbf{x}$ are $\mathbf{x}_{1}=\binom{1}{-3} e^{-3 t}$ and $\mathbf{x}_{2}=\binom{1}{-3} t e^{-3 t}$.

True
False
b. [3 points] If \mathbf{A} is a real-valued 5×5 matrix with 5 distinct eigenvalues, not necessarily real, and if the real parts of all of the eigenvalues are negative, then $\mathbf{x}=\mathbf{0}$ is an asymptotically stable critical point of $\mathbf{x}^{\prime}=\mathbf{A x}$.

True
False
c. [3 points] If the nonlinear system $\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x})$ has an unstable isolated critical point $\mathbf{x}=\mathbf{x}_{0}$, then any solution to the system will eventually get infinitely far from \mathbf{x}_{0}.

True
False
d. [3 points] Suppose that the nonlinear system $x^{\prime}=F(x, y), y^{\prime}=G(x, y)$ has an isolated critical point $(x, y)=(1,2)$. If we are able to linearize the system at this critical point and the eigenvalues of the resulting coefficient matrix are real-valued and non-zero, we can deduce the stability of the critical point from the linearization.

True False
e. $[3$ points $] \mathcal{L}^{-1}\left\{\frac{e^{-2 s}}{(s+1)^{2}+4}\right\}=e^{-(t-2)} \cos (2(t-2)) u_{2}(t)$

True False

