6. [10 points] If we make a small typographical error when writing out the Lorenz system that we studied in lab 5, we obtain the system

$$
\begin{aligned}
x^{\prime} & =\sigma(-x+y) \\
y^{\prime} & =r y-x-x z \\
z^{\prime} & =-b z+x y
\end{aligned}
$$

a. [5 points] As with the Lorenz system, one critical point of this system is ($0,0,0$). Find a linear system that approximates the system near $(0,0,0)$.

Solution: We know that this will be $\mathbf{x}^{\prime}=\mathbf{J}(0,0,0) \mathbf{x}$, where \mathbf{J} is the Jacobian. This is

$$
\begin{aligned}
\mathbf{J}_{0} & =\left.\left(\begin{array}{ccc}
\frac{\partial}{\partial x} \sigma(-x+y) & \frac{\partial}{\partial y} \sigma(-x+y) & \frac{\partial}{\partial z} \sigma(-x+y) \\
\frac{\partial}{\partial x}(r y-x-x z) & \frac{\partial}{\partial y}(r y-x-x z) & \frac{\partial}{\partial z}(r y-x-x z) \\
\frac{\partial}{\partial x}(-b z+x y) & \frac{\partial}{\partial y}(-b z+x y) & \frac{\partial}{\partial z}(-b z+x y)
\end{array}\right)\right|_{(0,0,0)} \\
& =\left.\left(\begin{array}{ccc}
-\sigma & \sigma & 0 \\
-1-z & r & -x \\
y & x & -b
\end{array}\right)\right|_{(0,0,0)}=\left(\begin{array}{ccc}
-\sigma & \sigma & 0 \\
-1 & r & 0 \\
0 & 0 & -b
\end{array}\right) .
\end{aligned}
$$

And our system is, with $\mathbf{x}=\left(\begin{array}{lll}x & y & z\end{array}\right)^{T}, \mathbf{x}^{\prime}=\mathbf{J}_{0} \mathbf{x}$.
Alternately, because we are linearizing at $(0,0,0)$ and all terms are polynomial, we can just drop the nonlinear terms from the system, obtaining the same result.
b. [5 points] If $b=5, \sigma=1$, and $r=1 / 4$, the eigenvalues and eigenvectors of the coefficient matrix of the linearized system you found in (a) are approximately $\lambda_{1}=-5$ and $\lambda_{2,3}=$ $-\frac{3}{8} \pm \frac{7}{9} i$, with $\mathbf{v}_{1}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$, and $\mathbf{v}_{2,3}=\left(\begin{array}{c}\frac{5}{8} \pm \frac{6}{7} i \\ 1 \\ 0\end{array}\right)$. Describe phase space trajectories in this case. If we start with an initial condition $(x, y, z)=(0.5,0.5,0)$, sketch the trajectory in the phase space.
Solution: We note that the first eigenvalue is a much larger (in magnitude) negative real value than the real part of the other two; thus, we expect that to decay much faster than the other. Because this is associated with the eigenvector $\mathbf{v}_{1}=\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)^{T}$, this means that the trajectories will rapidly decay into the $x y$-plane. Once there, they will be spiral trajectories. We note that the linearized system gives $\binom{x}{y}^{\prime}=\left(\begin{array}{cc}-1 & 1 \\ -1 & 1 / 4\end{array}\right)\binom{x}{y}$, so starting from $(x, y)=(1,1),\left(x^{\prime}, y^{\prime}\right)=(0,-3 / 4)$ and the trajectory must be moving clockwise. Thus we have a clockwise spiral in the $x y$-plane, shown below.

