7. [15 points] Consider a mass-spring system with a nonlinear "soft" spring, for which the displacement x of a mass attached to the spring is modeled by

$$
x^{\prime \prime}+2 \gamma_{0} x^{\prime}+k\left(x-x^{2}\right)=0 .
$$

a. [4 points] Rewrite this as a system in $\mathbf{x}=\binom{x}{y}=\binom{x}{x^{\prime}}$.

Solution: We have

$$
\binom{x}{y}^{\prime}=\binom{y}{k\left(x^{2}-x\right)-2 \gamma_{0} y} .
$$

b. [5 points] Find all critical points for your system from (a).

Solution: To find critical points we require that $x^{\prime}=y^{\prime}=0$. Thus $y=0$, and $x^{2}-x=0$, so $x=0$ or $x=1$. The two critical points are $(0,0)$ and $(1,0)$.

Problem 7, continued.
We are solving

$$
x^{\prime \prime}+2 \gamma_{0} x^{\prime}+k\left(x-x^{2}\right)=0 .
$$

You may want to write your system from (a) here:

$$
\binom{x}{y}^{\prime}=\binom{y}{k\left(x^{2}-x\right)-2 \gamma_{0} y} .
$$

c. [6 points] Let $\gamma_{0}=4$ and $k=18$. Sketch the phase plane for the system in this case by linearizing about all critical points and determining local behavior. Using your sketch, what do you expect to happen to a solution that starts with the initial condition $x(0)=0.8$, $x^{\prime}(0)=y(0)=0.2$? (Note: for this part of the problem you should assume that the original equation is in fact well-defined for $x<0$.)

Solution: The Jacobian of the system is $J=\left(\begin{array}{cc}0 & 1 \\ 18(2 x-1) & -8\end{array}\right)$. At $(0,0)$, we have $J_{0}=\left(\begin{array}{cc}0 & 1 \\ -18 & -8\end{array}\right)$. Eigenvalues of J_{0} satisfy $\lambda^{2}+8 \lambda+18=0$, or $(\lambda+4)^{2}+2=0$, so $\lambda=-4 \pm i \sqrt{2}$. At $(1,0),\binom{x}{y}^{\prime}=J_{0}\binom{1}{0}=\binom{0}{-18}$. This is downward, so near $(0,0)$ we must have a clockwise spiral sink.

At $(1,0)$, the Jacobian is $J_{1}=\left(\begin{array}{cc}0 & 1 \\ 18 & -8\end{array}\right)$. Eigenvalues satisfy $\lambda^{2}+8 \lambda-18=$ $(\lambda+4)^{2}-34=0$, so $\lambda=-4 \pm \sqrt{34}$. Note that $\sqrt{34} \approx \sqrt{36}=6$, so these are approximately $\lambda_{1,2}=-10,2$. Then eigenvectors satisfy $(4 \mp \sqrt{34}) v_{1}+v_{2}=0$, so the eigenvectors are $\mathbf{v}_{1,2}=\binom{1}{-4 \pm \sqrt{34}} \approx\binom{1}{-10},\binom{1}{2}$. This is a(n unstable) saddle point. Sketching these in the phase plane, we obtain the graph shown below.

Then, if we start at $(0.8,0.2)$, we are to the left of the critical point $(1,0)$ and below the attracting eigenline. We therefore expect the trajectory to move out and down toward $(1,0)$, crossing the x-axis to the left of $(1,0)$ and then spiraling in to $(0,0)$. The phase portrait is shown below, with the trajectory starting at $(0.8,0.2)$ shown with an initial dot and thicker lines. The dashed curves are nonlinear trajectories.

