8. [15 points] For each of the following, identify the statement as true or false by circling "True" or "False" as appropriate, and provide a short (one or two sentence) explanation indicating why that answer is correct.
a. [3 points] Two linearly independent solutions of $x^{\prime \prime}+6 x^{\prime}+9 x=0$ are $x_{1}=e^{-3 t}$ and $x_{2}=$ $t e^{-3 t}$. Thus two linearly independent solutions of $\mathbf{x}^{\prime}=\left(\begin{array}{cc}0 & 1 \\ -9 & -6\end{array}\right) \mathbf{x}$ are $\mathbf{x}_{1}=\binom{1}{-3} e^{-3 t}$ and $\mathbf{x}_{2}=\binom{1}{-3} t e^{-3 t}$. True False

Solution: There are a number of ways to see that this is false: first is that \mathbf{x}_{2} isn't a solution to the system $\left(\mathbf{x}_{2}^{\prime}=\binom{-3 t+1}{9 t-3} e^{-3 t}\right.$, while the right hand side is $\binom{-3 t}{9 t} e^{-3 t}$.) In addition, \mathbf{x}_{1} and \mathbf{x}_{2} aren't linearly independent $\left(W\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=0\right)$.
b. [3 points] If \mathbf{A} is a real-valued 5×5 matrix with 5 distinct eigenvalues, not necessarily real, and if the real parts of all of the eigenvalues are negative, then $\mathbf{x}=\mathbf{0}$ is an asymptotically stable critical point of $\mathbf{x}^{\prime}=\mathbf{A x}$.
True False

Solution: All terms in the general solution to $\mathbf{x}^{\prime}=\mathbf{A x}$ will be multiplied by a factor of $e^{\mathrm{Re}\left(\lambda_{j}\right) t}(1 \leq j \leq 5)$, with the only other functional dependence being $\cos (\omega t), \sin (\omega t)$ or powers of t. Thus the solutions all decay to zero, and the critical point is stable.
c. [3 points] If the nonlinear system $\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x})$ has an unstable isolated critical point $\mathbf{x}=\mathbf{x}_{0}$, then any solution to the system will eventually get infinitely far from \mathbf{x}_{0}.

$$
\text { True } \quad \text { False }
$$

Solution: There are lots of counterexamples. A saddle point has a line of solutions that approach the critical point asymptotically. Another example is the van der Pol system: for certain parameter values $\mathbf{x}=\mathbf{0}$ is an unstable critical point, but all solutions are attracted to a limit cycle which does not allow trajectories to escape to infinity.
d. [3 points] Suppose that the nonlinear system $x^{\prime}=F(x, y), y^{\prime}=G(x, y)$ has an isolated critical point $(x, y)=(1,2)$. If we are able to linearize the system at this critical point and the eigenvalues of the resulting coefficient matrix are real-valued and non-zero, we can deduce the stability of the critical point from the linearization.

Solution: This is the substance of our theorem about the linear analysis of almost linear systems; if the eigenvalues are real and non-zero, small changes will not change our conclusion as to the stability of the point. If the eigenvalues are equal we may not be able to determine if the point is a node or a spiral point, but its stability will remain the same.
e. $[3$ points $] \mathcal{L}^{-1}\left\{\frac{e^{-2 s}}{(s+1)^{2}+4}\right\}=e^{-(t-2)} \cos (2(t-2)) u_{2}(t)$

> True

False
Solution: To use the rule for $F(s-c)$, all terms with s must first be rewritten as $s-c$: $\mathcal{L}^{-1}\left\{\frac{e^{-2 s_{s}}}{(s+1)^{2}+4}\right\}=\mathcal{L}^{-1}\left\{\frac{e^{-2 s}((s+1)-1)}{(s+1)^{2}+4}\right\}=e^{-(t-2)}\left(\cos (2(t-2))-\frac{1}{2} \sin (2(t-2))\right) u_{2}(t)$.

