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7. [16 points] Our model for a ruby laser is, with N = the population inversion of atoms and
P = the intensity of the laser,

N'=vA—~yN(1+P), P' =P(N-1).

In lab we found that the critical points of this system are (N,P) = (4,0) and (N,P) =
(1, A—1). For this problem we will assume that v = %; A is, of course, also a constant.
a. [4 points] Find a linear system that approximates the nonlinear system near the critical
point (A,0). Show that if A < 1 this critical point is asymptotically stable, and if A > 1
it is unstable.

b. [6 points] Suppose that the linear system you obtained in (a) is, for some value of A,
u = —% u — v, v = v. Sketch a phase portrait that shows solution trajectories of the
linear system. Explain how these trajectories are related to trajectories in the (N, P)

phase plane.
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Problem 7, cont. We are considering the system

1, 1
N'=ZA- N(1+P), P'=P(N-1),

which has critical points (N, P) = (A,0) and (N,P) = (1,A—1).

c. [6 points] Suppose that, for the value of A used in (b), the coefficient matrix for the
1

1 _1
linear system approximating (N, P) near the critical point (1, A—1) is < 1 02>, which

has eigenvalues A = 2(—1 +4). Using this information with your work in (b), sketch a
representative solution curve for P as a function of ¢, if P(0) = 0.01 when N(0) = 0.

University of Michigan Department of Mathematics Winter, 2018 Math 216 Exam 3 Problem 7



