5. [12 points] Each of the following requires a short (one equation or formula) answer. Provide the required answer, and a short (one or two sentence) explanation.
a. [3 points] Write a linear, constant coefficient, second order, nonhomogeneous differential equation for which the method of undetermined coefficients is not applicable.
Solution: We must have a forcing term that is not of polynomial, exponential, or sinusoidal function, or a product of those. One such example is

$$
y^{\prime \prime}+y=\tan (t)
$$

b. [3 points] Write a linear, constant coefficient, second order differential equation that has the phase portrait shown to the right.
Solution: The phase portrait shows a repeated eigenvalue (root of the characteristic equation), so this should be something like

$$
y^{\prime \prime}+2 y^{\prime}+y=0 .
$$

This has the solutions $y_{1}=e^{-t}$ and $y_{2}=t e^{-t}$, so the eigenvector is $(1-1)^{T}\left(=\left(\begin{array}{ll}y_{1}(0) & y_{1}^{\prime}(0)\end{array}\right)^{T}\right)$, as shown. (Note also that the second solution is $\mathbf{x}=\left(t \mathbf{v}+\left(\begin{array}{ll}0 & 1\end{array}\right)^{T}\right) e^{-t}$, which completes the phase portrait shown.)
c. [3 points] If $L[y]=f(t)$ is a linear, constant coefficient, second order differential equation and $L[y]=0$ is solved by $y=c_{1} e^{-t}+c_{2} t e^{-t}$, write a function $f(t)$ for which a good solution guess would be $y=A t^{3} e^{-t}+B t^{2} e^{-t}$.
Solution: Note that if $f(t)=e^{-t}$, we must guess $y=A t^{2} e^{-t}$ to avoid having any term in the guess that is part of the homogeneous solution. Therefore we can take

$$
f(t)=k t e^{-t}
$$

for any k; our guess is then $y=t^{2}\left(A t e^{-t}+B e^{-t}\right)$, as desired.
d. [3 points] Write a linear, constant coefficient, second order differential equation having a phase portrait that is a spiral sink converging on the point $(2,0)$.
Solution: For the phase portrait to show a spiral sink the characteristic equation must have complex conjugate roots with negative real part. One such is $r^{2}+2 r+2=0$ (for which $r=-1 \pm i)$, so that the linear operator is $L=D^{2}+2 D+2$. Then, for the critical point to be $(2,0)$, we must have an equilibrium solution $x=2$. The equation could therefore be

$$
x^{\prime \prime}+2 x^{\prime}+2 x=4
$$

