7. [16 points] Our model for a ruby laser is, with $N=$ the population inversion of atoms and $P=$ the intensity of the laser,

$$
N^{\prime}=\gamma A-\gamma N(1+P), \quad P^{\prime}=P(N-1) .
$$

In lab we found that the critical points of this system are $(N, P)=(A, 0)$ and $(N, P)=$ (1, $A-1$). For this problem we will assume that $\gamma=\frac{1}{2} ; A$ is, of course, also a constant.
a. [4 points] Find a linear system that approximates the nonlinear system near the critical point ($A, 0$). Show that if $A<1$ this critical point is asymptotically stable, and if $A>1$ it is unstable.
Solution: The easiest way to find the linearization is to use the Jacobian. Here we have $N^{\prime}=F(N, P)=\frac{A}{2}-\frac{1}{2}(N+N P), P^{\prime}=G(N, P)=P N-P$, so that

$$
J=\left(\begin{array}{ll}
F_{N} & F_{P} \\
G_{N} & G_{P}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{1}{2}(1+P) & -\frac{1}{2} N \\
P & N-1
\end{array}\right) .
$$

At $(A, 0)$, this is $J(A, 0)=\left(\begin{array}{cc}-\frac{1}{2} & -\frac{A}{2} \\ 0 & A-1\end{array}\right)$, which has eigenvalues $\lambda=-\frac{1}{2}$ and $\lambda=$ $A-1$. Thus, if $A<1$ both eigenvalues are real and negative, and the critical point is asymptotically stable; if $A>1$, the second eigenvalue is positive and the critical point becomes unstable.
b. [6 points] Suppose that the linear system you obtained in (a) is, for some value of A, $u^{\prime}=-\frac{1}{2} u-v, v^{\prime}=v$. Sketch a phase portrait that shows solution trajectories of the linear system. Explain how these trajectories are related to trajectories in the (N, P) phase plane.
Solution: Note that this is $\mathbf{u}^{\prime}=\left(\begin{array}{cc}-\frac{1}{2} & -1 \\ 0 & 1\end{array}\right) \mathbf{u}$, so this is apparently the result we obtained in (a) with $A=2$. Eigenvalues of the coefficient matrix are $\lambda=-\frac{1}{2}$ and $\lambda=1$. When $\lambda=-\frac{1}{2}$ we have the eigenvector $\mathbf{v}=\left(\begin{array}{ll}1 & 0\end{array}\right)^{T}$, and when $\lambda=1, \mathbf{v}=\left(\begin{array}{ll}-2 & 3\end{array}\right)^{T}$. These give the saddle point shown below.

These trajectories will be very similar to the trajectories in the (N, P) plane at the critical point, $(A, 0)$.

Problem 7, cont. We are considering the system

$$
N^{\prime}=\frac{1}{2} A-\frac{1}{2} N(1+P), \quad P^{\prime}=P(N-1)
$$

which has critical points $(N, P)=(A, 0)$ and $(N, P)=(1, A-1)$.
c. [6 points] Suppose that, for the value of A used in (b), the coefficient matrix for the linear system approximating (N, P) near the critical point $(1, A-1)$ is $\left(\begin{array}{cc}-1 & -\frac{1}{2} \\ 1 & 0\end{array}\right)$, which has eigenvalues $\lambda=\frac{1}{2}(-1 \pm i)$. Using this information with your work in (b), sketch a representative solution curve for P as a function of t, if $P(0)=0.01$ when $N(0)=0$.

Solution: We note that in the phase plane for the nonlinear system, critical points are at $(A, 0)$ and $(1, A-1)$. The phase portrait near the former is given in (b); for the latter, we know it is a spiral sink, and, because $\left(\begin{array}{cc}-1 & -\frac{1}{2} \\ 1 & 0\end{array}\right)\binom{1}{0}=\binom{-1}{1}$, the inward spiral must be counter clockwise. This gives the phase portrait shown below.

A trajectory starting at $(0,0.01)$ is suggested by the dashed curve. Reading the behavior of P from this, we get the curve below. We know that it starts at $(0,0.01)$, that it must remain close to the t-axis for a while, and then must oscillate around and converge to the line $P=A-1$. Finally, note that we do not know the time scale on which these transitions take.

