1. [12 points] Six matrices and their eigenvalues and eigenvectors are given below. Use this information to answer the questions below. Be sure that you explain your answers.

\mathbf{A}_{1}	\mathbf{A}_{2}	\mathbf{A}_{3}	\mathbf{A}_{4}	\mathbf{A}_{5}	\mathbf{A}_{6}
$\left(\begin{array}{cc}-1 & 2 \\ -1 & -3\end{array}\right)$	$\left(\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right)$	$\left(\begin{array}{cc}-2 & 2 \\ 1 & -3\end{array}\right)$	$\left(\begin{array}{cc}-1 & 3 \\ 2 & -2\end{array}\right)$	$\left(\begin{array}{ll}-2 & -2 \\ -1 & -3\end{array}\right)$	$\left(\begin{array}{cc}-3 & -1 \\ 1 & -1\end{array}\right)$
$\lambda_{1,2}=-2 \pm i$	$\lambda_{1,2}=1,4$	$\lambda_{1,2}=-4,-1$	$\lambda_{1,2}=-4,1$	$\lambda_{1,2}=-4,-1$	$\lambda_{1,2}=-2,-2$
$\mathbf{v}_{1}=\binom{2}{-1+i}$	$\mathbf{v}_{1}=\binom{-2}{1}$	$\mathbf{v}_{1}=\binom{-1}{1}$	$\mathbf{v}_{1}=\binom{-1}{1}$	$\mathbf{v}_{1}=\binom{1}{1}$	$\mathbf{v}_{1}=\binom{-1}{1}$
$\mathbf{v}_{2}=\binom{2}{-1-i}$	$\mathbf{v}_{2}=\binom{1}{1}$	$\mathbf{v}_{2}=\binom{2}{1}$	$\mathbf{v}_{2}=\binom{3}{2}$	$\mathbf{v}_{2}=\binom{-2}{1}$	$\mathbf{w}=\binom{1}{0}$

a. [6 points] Write a linear system involving one of the \mathbf{A}_{j} that could have the phase portrait shown to the right.

b. [6 points] Write a linear system involving one of the \mathbf{A}_{j} that could have the phase portrait shown to the right.

