3. [12 points] Suppose a model for a physical system (e.g., a circuit or a mass-spring system) is given by the differential equation $L[y]=y^{\prime \prime}+a y^{\prime}+b y=k$ (where a, b, and k are real numbers).
a. [4 points] If the solution to the problem with some initial conditions is $y=e^{-t} \cos (2 t)-$ $e^{-t} \sin (2 t)+2$, what can you say about a, b, and k ?
b. [4 points] If the solution to the problem with some initial conditions is $y=e^{-t} \cos (2 t)-$ $e^{-t} \sin (2 t)+2$, sketch a phase portrait for the system. Be sure it is clear how you obtain your solution.
c. [4 points] Now suppose that the solution to the problem with some initial conditions is $y=e^{-t} \cos (2 t)-e^{-t} \sin (2 t)+2$, and that at some time $t=t_{0}$ we remove the forcing term (k). Write a single differential equation you could solve to find y for all $t \geq 0$. What initial conditions apply at $t=0$?
