5. [10 points] Consider the linear system

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)^{\prime}=\left(\begin{array}{ccc}
-1 & 0 & \alpha^{2} \\
0 & -2 & 2 \\
1 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

a. [5 points] For what values of α, if any, will all solutions to the system remain bounded as $t \rightarrow \infty ?^{1}$
b. [5 points] Now suppose that $\alpha=2$. Are there any initial conditions for which solutions to the system will remain bounded? If so, what are they? Explain.
${ }^{1}$ Possibly useful: $\operatorname{det}\left(\left(\begin{array}{lll}a & 0 & b \\ 0 & c & d \\ e & 0 & f\end{array}\right)\right)=a c f-b c e$.

