1. [12 points] Six matrices and their eigenvalues and eigenvectors are given below. Use this information to answer the questions below. Be sure that you explain your answers.

\mathbf{A}_{1}	\mathbf{A}_{2}	\mathbf{A}_{3}	\mathbf{A}_{4}	\mathbf{A}_{5}	\mathbf{A}_{6}
$\left(\begin{array}{cc}-1 & 2 \\ -1 & -3\end{array}\right)$	$\left(\begin{array}{cc}2 & 2 \\ 1 & 3\end{array}\right)$	$\left(\begin{array}{cc}-2 & 2 \\ 1 & -3\end{array}\right)$	$\left(\begin{array}{cc}-1 & 3 \\ 2 & -2\end{array}\right)$	$\left(\begin{array}{cc}-2 & -2 \\ -1 & -3\end{array}\right)$	$\left(\begin{array}{cc}-3 & -1 \\ 1 & -1\end{array}\right)$
$\lambda_{1,2}=-2 \pm i$	$\lambda_{1,2}=1,4$	$\lambda_{1,2}=-4,-1$	$\lambda_{1,2}=-4,1$	$\lambda_{1,2}=-4,-1$	$\lambda_{1,2}=-2,-2$
$\mathbf{v}_{1}=\binom{2}{-1+i}$	$\mathbf{v}_{1}=\binom{-2}{1}$	$\mathbf{v}_{1}=\binom{-1}{1}$	$\mathbf{v}_{1}=\binom{-1}{1}$	$\mathbf{v}_{1}=\binom{1}{1}$	$\mathbf{v}_{1}=\binom{-1}{1}$
$\mathbf{v}_{2}=\binom{2}{-1-i}$	$\mathbf{v}_{2}=\binom{1}{1}$	$\mathbf{v}_{2}=\binom{2}{1}$	$\mathbf{v}_{2}=\binom{3}{2}$	$\mathbf{v}_{2}=\binom{-2}{1}$	$\mathbf{w}=\binom{1}{0}$

a. [6 points] Write a linear system involving one of the \mathbf{A}_{j} that could have the phase portrait shown to the right.
Solution: We note that there is a critical point at the origin, so we are solving a homogeneous system $\mathbf{x}^{\prime}=\mathbf{A x}$. All solutions approach the origin, and there are two straight-line solutions, so there must be two real negative eigenvalues. This means our coefficient matrix is either \mathbf{A}_{3} or \mathbf{A}_{5}. Then we note
 that the eigenvalue associated with an eigenvector with negative slope is larger, because all trajectories not on an eigenvector asymptotically approach a line in the direction of that eigenvector. This is the case for \mathbf{A}_{5}, where $\lambda=-4$ and $\lambda=-1$, and the eigenvector associated with $\lambda=-1$ has negative slope-and the eigenvectors correspond to the lines $y=x$ and $y=x / 2$ seen in the phase portrait. Thus our system is

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
-2 & -2 \\
-1 & -3
\end{array}\right) \mathbf{x}
$$

b. [6 points] Write a linear system involving one of the \mathbf{A}_{j} that could have the phase portrait shown to the right.

Solution: Note that the critical point is in this case at $(1,1)$, not the origin. Thus our system must be non-homogeneous, $\mathbf{x}^{\prime}=\mathbf{A}+\mathbf{k}$. There are no straight-line trajectories shown in the phase portrait, so the eigenvalues of \mathbf{A} must be complex, which is the case for \mathbf{A}_{1}; further, \mathbf{A}_{1} predicts that above the
 critical point slopes will be $\binom{x_{1}^{\prime}}{x_{2}^{\prime}}=\mathbf{A}_{1}\binom{0}{1}=\binom{2}{-3}$, which is consistent with the phase portrait. Finally, for the critical point to be at $(1,1)$, we must have $\mathbf{0}=\left(\begin{array}{cc}-1 & 2 \\ -1 & -3\end{array}\right)\binom{1}{1}+\mathbf{k}$, so that $\mathbf{k}=\binom{-1}{4}$, and our system is

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
-1 & 2 \\
-1 & -3
\end{array}\right) \mathbf{x}+\binom{-1}{4}
$$

