1. [12 points] Six matrices and their eigenvalues and eigenvectors are given below. Use this information to answer the questions below. Be sure that you explain your answers.

\mathbf{A}_1	\mathbf{A}_2	\mathbf{A}_3	\mathbf{A}_4	\mathbf{A}_5	\mathbf{A}_{6}
				$\begin{pmatrix} -2 & -2 \\ -1 & -3 \end{pmatrix}$	$\begin{pmatrix} -3 & -1 \\ 1 & -1 \end{pmatrix}$
$\lambda_{1,2} = -2 \pm i$	$\lambda_{1,2} = 1, 4$	$\lambda_{1,2} = -4, -1$	$\lambda_{1,2} = -4, 1$	$\lambda_{1,2} = -4, -1$	$\lambda_{1,2} = -2, -2$
$\mathbf{v}_1 = \begin{pmatrix} 2\\ -1+i \end{pmatrix}$					$\mathbf{v}_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$
$\mathbf{v}_2 = \begin{pmatrix} 2\\ -1-i \end{pmatrix}$	$\mathbf{v}_2 = \begin{pmatrix} 1\\1 \end{pmatrix}$	$\mathbf{v}_2 = \begin{pmatrix} 2\\1 \end{pmatrix}$	$\mathbf{v}_2 = \begin{pmatrix} 3\\2 \end{pmatrix}$	$\mathbf{v}_2 = \begin{pmatrix} -2\\1 \end{pmatrix}$	$\mathbf{w} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

a. [6 points] Write a linear system involving one of the \mathbf{A}_i that could have the phase portrait shown to the right.

Solution: We note that there is a critical point at the origin, so we are solving a homogeneous system $\mathbf{x}' = \mathbf{A}\mathbf{x}$. All solutions approach the origin, and there are two straight-line solutions, so there must be two real negative eigenvalues. This means our coefficient matrix is either A_3 or A_5 . Then we note that the eigenvalue associated with an eigenvector with nega-

tive slope is larger, because all trajectories not on an eigenvector asymptotically approach a line in the direction of that eigenvector. This is the case for A_5 , where $\lambda = -4$ and $\lambda = -1$, and the eigenvector associated with $\lambda = -1$ has negative slope—and the eigenvectors correspond to the lines y = x and y = x/2 seen in the phase portrait. Thus our system is

$$\mathbf{x}' = \begin{pmatrix} -2 & -2 \\ -1 & -3 \end{pmatrix} \mathbf{x}.$$

b. [6 points] Write a linear system involving one of the \mathbf{A}_i that could have the phase portrait shown to the right.

Solution: Note that the critical point is in this case at (1, 1), not the origin. Thus our system must be non-homogeneous, $\mathbf{x}' = \mathbf{A} + \mathbf{k}$. There are no straight-line trajectories shown in the phase portrait, so the eigenvalues of **A** must be complex, which is the case for \mathbf{A}_1 ; further, \mathbf{A}_1 predicts that above the critical point slopes will be $\begin{pmatrix} x'_1 \\ x'_2 \end{pmatrix} = \mathbf{A}_1 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$, which is consistent with the phase portrait. Finally, for the critical point to be at (1,1), we must have $\mathbf{0} = \begin{pmatrix} -1 & 2 \\ -1 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \mathbf{k}$, so that $\mathbf{k} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$, and our system is

 $\mathbf{x}' = \begin{pmatrix} -1 & 2\\ -1 & -3 \end{pmatrix} \mathbf{x} + \begin{pmatrix} -1\\ 4 \end{pmatrix}.$