2. [12 points] For each of the following, give an example, as indicated.
a. [4 points] Give a first-order differential equation that could have the phase line shown to the right.

Solution: We see that there are critical points at $y=0$ and $y=2$, and that the first is unstable and the second semistable. This suggests the equation $y^{\prime}=y(y-2)^{2}$. Checking, we see that for $y<0, y^{\prime}<0$, and $y>0$ gives $y^{\prime}>0$ (for $y \neq 2$), so this works.
b. [4 points] Give a second-order, linear, constant-coefficient, nonhomogeneous differential equation that could have the response shown to the right.
Solution: We note this has a likely decaying oscillatory transient, and a steady sinusoidal response. Thus we expect the equation is something like $y^{\prime \prime}+y^{\prime}+2 y=$ $\cos (\omega t)$. We note that the period of the steady response is 2 , so $\omega=\pi$.

c. [4 points] Give a system of two linear, first-order, constant-coefficient differential equations which have an isolated critical point at the origin that is an unstable saddle point.
Solution: A system such as $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}=\left(\begin{array}{cc}1 & 2 \\ 0 & -1\end{array}\right) \mathbf{x}$ will have the desired characteristics. Eigenvalues are $\lambda= \pm 1$, and because $\operatorname{det}(\mathbf{A}) \neq 0$ the origin is the only critical point and is thus isolated.

