3. [12 points] Suppose a model for a physical system (e.g., a circuit or a mass-spring system) is given by the differential equation $L[y]=y^{\prime \prime}+a y^{\prime}+b y=k$ (where a, b, and k are real numbers).
a. [4 points] If the solution to the problem with some initial conditions is $y=e^{-t} \cos (2 t)-$ $e^{-t} \sin (2 t)+2$, what can you say about a, b, and k ?

Solution: We see that eigenvalues are $\lambda=-1 \pm 2 i$, so the characteristic polynomial is $p(\lambda)=(\lambda+1)^{2}+4=\lambda^{2}+2 \lambda+5$ and $a=2, b=5$. Then $y_{p}=2$, so $k=10$.
b. [4 points] If the solution to the problem with some initial conditions is $y=e^{-t} \cos (2 t)-$ $e^{-t} \sin (2 t)+2$, sketch a phase portrait for the system. Be sure it is clear how you obtain your solution.

Solution: This is a spiral sink centered on $(2,0)$. Note that $y(0)=3$, and as t increases y looks like $(\cos (2 t),-\sin (2 t))$, so the spiral is clockwise. This can also be seen by writing the equation as a system and checking the direction of motion.

c. [4 points] Now suppose that the solution to the problem with some initial conditions is $y=e^{-t} \cos (2 t)-e^{-t} \sin (2 t)+2$, and that at some time $t=t_{0}$ we remove the forcing term (k). Write a single differential equation you could solve to find y for all $t \geq 0$. What initial conditions apply at $t=0$?

Solution: The equation is $y^{\prime \prime}+2 y^{\prime}+5 y=10\left(1-u_{t_{0}}(t)\right)$; we can see the initial conditions from the solution: $y(0)=3, y^{\prime}(0)=-3$.

