4. [12 points] Consider the predator-prey model with harvesting (harvesting here implies hunting by humans, e.g., fishing if the populations are fish) given by

$$
x^{\prime}=x(3-x-y)-2, \quad y^{\prime}=y(-3+x)
$$

Note that as x and y are populations, we must have $x, y \geq 0$.
a. [3 points] Explain what each term in the equation for x models. Is x or y the predator? Which population is being harvested?

Solution: In the equation for x, the term $3 x$ is a birth/death rate term; $-x^{2}$ is a logistic resource limitation term; $-x y$ is the species interaction term, and as it is negative we know x must be the prey; and the -2 must be the harvesting term, so x is also being harvested.
b. [7 points] By doing an appropriate linear analysis, sketch a phase portrait for this system.

Solution: First we find critical points: if $y^{\prime}=0$, we need $y=0$ or $x=3$. Then, if $x^{\prime}=0$ and $x=3$, we have $-3 y-2=0$, so that $y=-\frac{2}{3}$. This doesn't make sense for our model, so we ignore it. If $y=0, x^{\prime}=0$ requires $-x^{2}+3 x-2=-(x-2)(x-1)=0$, so $x=1$ or $x=2$. The physically relevant critical points are therefore $(1,0)$ and $(2,0)$.

Then, the Jacobian for the system is $\mathbf{J}=\left(\begin{array}{cc}3-2 x-y & -x \\ y & -3+x\end{array}\right)$.
At $(1,0), \mathbf{J}(1,0)=\left(\begin{array}{ll}1 & -1 \\ 0 & -2\end{array}\right)$, so that eigenvalues of the linearized system are $\lambda=1,-2$. Corresponding eigenvectors are $\mathbf{v}=\left(\begin{array}{ll}1 & 0\end{array}\right)^{T}$ and $\mathbf{v}=\left(\begin{array}{ll}1 & 1\end{array}\right)^{T}$. At $(2,0), \mathbf{J}(2,0)=\left(\begin{array}{cc}-1 & -2 \\ 0 & -1\end{array}\right)$, so $\lambda=-1$ with $\mathbf{v}=\binom{1}{0}$. We could do the analysis without the generalized eigenvector, but it satisfies $\left(\begin{array}{cc}0 & -2 \\ 0 & 0\end{array}\right) \mathbf{w}=\binom{1}{0}$, so that
 $\mathbf{w}=\left(\begin{array}{ll}0 & -\frac{1}{2}\end{array}\right)^{T}$. Note that this means that a trajectory starting immediately below the critical point will initially move to the right.

Finally, note that the y-nullclines $\left(y^{\prime}=0\right)$ are $y=0$ and $x=-3$; the x-nullcline is harder to visualize, but is given by $y=3-x-\frac{2}{x}$. Putting these together, we get the phase portrait shown to the right, above.
c. [2 points] Based on your answer to (b), sketch what you expect the behavior of the solution to the system will be as a function of time if $x(0)=3$ and $y(0)=1$. How would you expect this to differ from the behavior with the initial condition $x(0)=1, y(0)=1$?
Solution: Starting at $(3,1)$ the trajectory should move to the right and down, overshooting the critical point at $(2,0)$ but then coming back to converge to it. From $(1,1)$, we move to the left and down until $x=0$. At that point population x vanishes and $y^{\prime}=-3 y$, so y also decays to zero. These are shown by the two dashed curves above. The corresponding trajectories are given below.

