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4. [12 points] Consider the predator-prey model with harvesting (harvesting here implies hunting
by humans, e.g., fishing if the populations are fish) given by
P=x@B-1r-y)—-2, v =y(-3+1).
Note that as z and y are populations, we must have x,y > 0.

a. [3 points| Explain what each term in the equation for x models. Is z or y the predator?
Which population is being harvested?

2 is a logistic

Solution: In the equation for x, the term 3z is a birth/death rate term; —x
resource limitation term; —xy is the species interaction term, and as it is negative we
know x must be the prey; and the —2 must be the harvesting term, so x is also being

harvested.

b. [7 points| By doing an appropriate linear analysis, sketch a phase portrait for this system.

Solution: First we find critical points: if ¥y’ = 0, we need y = 0 or x = 3. Then, if 2’ =0
and x = 3, we have —3y —2 = 0, so that y = —%. This doesn’t make sense for our model,
so we ignore it. If y = 0, 2/ = 0 requires —22 +3r —2= —(x —2)(zx — 1) =0,s0 z = 1
or x = 2. The physically relevant critical points are therefore (1,0) and (2,0).
Then, the Jacobian for the systemis J = <3 —2r-y o >
Y -3+

1 -1
At (1,0), J(1,0) = <O _2>, so that eigenvalues of 30
the linearized system are A\ = 1, —2. Corresponding
eigenvectors are v = (1 O)T and v = (1 l)T. At
-1 -2 . 1
(2,0), J(2,0) = ( 0 _1>, so A= —1withv = (0>
We could do the analysis without the generalized eigen-
vector, but it satisfies 0 -2 w = L , so that
0 0 0

w = (O —%)T. Note that this means that a trajectory starting immediately below the
critical point will initially move to the right.

Finally, note that the y-nullclines (y' = 0) are y = 0 and x = —3; the x-nullcline is
harder to visualize, but is given by y = 3 — x — % Putting these together, we get the
phase portrait shown to the right, above.

c. [2 points] Based on your answer to (b), sketch what you expect the behavior of the
solution to the system will be as a function of time if 2(0) = 3 and y(0) = 1. How would
you expect this to differ from the behavior with the initial condition z(0) =1, y(0) = 17

Solution:  Starting at (3,1) the trajectory should move to the right and down, over-
shooting the critical point at (2,0) but then coming back to converge to it. From (1,1),
we move to the left and down until x = 0. At that point population x vanishes and
y' = —3y, so y also decays to zero. These are shown by the two dashed curves above.

The corresponding trajectories are given below.
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