Physics Cheat-Sheat

Equations

Force = Mass \times Acceleration Force = Pressure \times Area Work = Force \times Distance

Units

Quantity	English Units	Metric (SI) Units
TIME	Seconds (sec)	Seconds (sec)
Length or Distance	Feet (ft), Miles (mi)	Meters (m)
MASS		Kilograms (kg)
Force or Weight	Pounds (lb)	Newtons $(N = kg \cdot m/sec^2)$
Work or Energy	Foot-Pounds $(lbf = ft \cdot lb)$	Joules $(J = N \cdot m = kg \cdot m^2/sec^2)$
Mass Density		$\rm kg/m^3$
Weight Density	lb/ft^3	
Pressure	Pascal (Pa = N/m^2)	Pounds per square foot (lb/ft^2)

Metric prefixes

Prefix	Meaning	Example
nano	10^{-9}	$1 \text{ nanosecond} = 1 \text{ ns} = 10^{-9} \text{ seconds}$
micro	10^{-6}	1 microsecond = 1 μ s = 10 ⁻⁶ seconds
milli	10^{-3}	$1 \text{ milligram} = 1 \text{ mg} = 10^{-3} \text{ gram}$
centi	10^{-2}	$1 \text{ centimeter} = 1 \text{ cm} = 10^{-2} \text{ gram}$
kilo	10^{3}	$1 \text{ kilometer} = 1 \text{ km} = 10^3 \text{ meters}$
mega	10^{6}	$1 \text{ megabyte} = 1 \text{ MB} = 10^6 \text{ bytes}$
giga	10^{9}	$1 \text{ gigahertz} = 1 \text{ GHz} = 10^9 \text{ Hertz}$

Pressure

To calculate the pressure underwater:

 $P = \delta g h$

Where

- P = PRESSURE
- $\delta=$ The mass density of the water
- $g=\operatorname{Acceleration}$ due to gravity
- h = Depth underwater.

Constants

Acceleration of gravity near the Earth's surface $= g = 9.8 \text{ m/sec}^2$ Mass density of water $= \delta = 1000 \text{ kg/m}^3$ Weight density of water $= \delta g = 62.4 \text{ lb/ft}^3$