Physics Cheat-Sheat

Equations

$$
\begin{aligned}
& \text { FORCE }=\text { MASS } \times \text { ACCELERATION } \\
& \text { FORCE }=\text { PRESSURE } \times \text { AREA } \\
& \text { WORK }=\text { FORCE } \times \text { DISTANCE }
\end{aligned}
$$

Units

Quantity	English Units	Metric (SI) Units
Time	Seconds (sec)	Seconds (sec)
Length or Distance	Feet (ft), Miles (mi)	Meters (m)
Mass	-	Kilograms (kg)
Force or Weight	Pounds (lb)	Newtons ($\mathrm{N}=\mathrm{kg} \cdot \mathrm{m} / \mathrm{sec}^{2}$)
Work or Energy	Foot-Pounds ($\mathrm{lbf}=\mathrm{ft} \cdot \mathrm{lb}$)	Joules ($\mathrm{J}=\mathrm{N} \cdot \mathrm{m}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{sec}^{2}$)
Mass Density	-	$\mathrm{kg} / \mathrm{m}^{3}$
Weight Density	$\mathrm{lb} / \mathrm{ft}^{3}$	
Pressure	$\operatorname{Pascal}\left(\mathrm{Pa}=\mathrm{N} / \mathrm{m}^{2}\right)$	Pounds per square foot ($\mathrm{lb} / \mathrm{ft}^{2}$)

Metric prefixes

Prefix	Meaning	Example
nano	10^{-9}	1 nanosecond $=1 \mathrm{~ns}=10^{-9}$ seconds
micro	10^{-6}	1 microsecond $=1 \mu \mathrm{~s}=10^{-6}$ seconds
milli	10^{-3}	1 milligram $=1 \mathrm{mg}=10^{-3}$ gram
centi	10^{-2}	1 centimeter $=1 \mathrm{~cm}=10^{-2}$ gram
kilo	10^{3}	1 kilometer $=1 \mathrm{~km}=10^{3}$ meters
mega	10^{6}	1 megabyte $=1 \mathrm{MB}=10^{6}$ bytes
giga	10^{9}	1 gigahertz $=1 \mathrm{GHz}=10^{9}$ Hertz

Pressure
To calculate the pressure underwater:

$$
P=\delta g h
$$

Where
$P=$ Pressure
$\delta=$ The mass density of the water
$g=$ Acceleration due to gravity
$h=$ Depth underwater.

Constants

$$
\begin{aligned}
\text { Acceleration of gravity near the Earth's surface } & =g=9.8 \mathrm{~m} / \mathrm{sec}^{2} \\
\text { Mass density of water } & =\delta=1000 \mathrm{~kg} / \mathrm{m}^{3} \\
\text { Weight density of water } & =\delta g=62.4 \mathrm{lb} / \mathrm{ft}^{3}
\end{aligned}
$$

